Introduction
Financial forecasting is an essential task that helps investors make sound investment decisions and wealth creation. With increasing public interest in trading stocks, cryptocurrencies, bonds, commodities, currencies, crypto coins and non-fungible tokens (NFTs), there have been several attempts to utilize unstructured data for financial forecasting. Unparalleled advances in multimodal deep learning have made it possible to utilize multimedia such as textual reports, news articles, streaming video content, audio conference calls, user social media posts, customer web searches, etc for identifying profit creation opportunities in the market. E.g., how can we leverage new and better information to predict movements in stocks and cryptocurrencies well before others? However, there are several hurdles towards realizing this goal - (1) large volumes of chaotic data, (2) combining text, audio, video, social media posts, and other modalities is non-trivial, (3) long context of media spanning multiple hours, days or even months, (4) user sentiment and media hype-driven stock/crypto price movement and volatility, (5) difficulties with traditional statistical methods (6) misinformation and non-interpretability of financial systems leading to massive losses and bankruptcies.
At the AAAI-2023 Workshop on Multimodal AI for Financial Forecasting (Muffin@AAAI2023), we aim to bring together researchers from natural language processing, computer vision, speech recognition, machine learning, statistics, and quantitative trading communities to expand research on the intersection of AI and financial time series forecasting. We will also organize 2 shared tasks in this workshop – (1) Stock Price and Volatility Prediction post-Monetary Conference Calls and (2) Cryptocurrency Bubble Detection.
Please refer to shared tasks page for more information.